If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-23-10=0
We add all the numbers together, and all the variables
5y^2-33=0
a = 5; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·5·(-33)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*5}=\frac{0-2\sqrt{165}}{10} =-\frac{2\sqrt{165}}{10} =-\frac{\sqrt{165}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*5}=\frac{0+2\sqrt{165}}{10} =\frac{2\sqrt{165}}{10} =\frac{\sqrt{165}}{5} $
| 5y^2-23-10=10 | | 1+2/3n=-8 | | 15=0.05n | | n+2(2n)=660 | | 6x+21=5x-4 | | 14=3(u-2)-7u | | 2(8p)=2(5p+3) | | 2(8p)=2(5p+15) | | 8(4p)=8(4p+12) | | 8(4p)=8(4p+3) | | 8/x(2+2)=16 | | 166=28-u | | 2^8p=2^5p+3 | | 2^8p=2^5p+15 | | 8/2(x+x)=16 | | 10.2=0.06y | | 8^4p=8^4p+12 | | 8^4p=8^4p+ | | w+9*5=w | | X+x-23=180 | | -2/3w-1/2=-4/7 | | X^2-11x+44x-1452=0 | | 11/x=100/11 | | 21+2y=2 | | 75x=85x | | 60x+4x^2=396 | | m=3*16-5 | | m=3+16-5 | | -2x+(-6)=3 | | 12x-7=7x-13 | | 11(8x-11)+6=8x+10 | | 13x-5x^2=0 |